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ABSTRACT: The nature of the electronic ground state of the
tetramethyleneethane (TME) diradical has proven to be a
challenge for both experiment and theory. Through the use of
quantum Monte Carlo (QMC) methods and multireference
perturbation theory, we demonstrate that the lowest singlet
state of TME is energetically lower than the lowest triplet state
at all values of the torsional angle between the allyl subunits.
Moreover, we find that the maximum in the potential energy
curve for the singlet state occurs at a torsional angle near 45°,
in contrast to previous calculations that placed the planar structure of the singlet state as the highest in energy. We also show that
the CASPT2 method when used with a sufficiently large reference space and a sufficiently flexible basis set gives potential energy
curves very close to those from the QMC calculations. Our calculations have converged the singlet−triplet gap of TME as a
function of methodology and basis set. These results provide insight into the level of theory required to properly model
diradicals, in particular disjoint diradicals, and provide guidelines for future studies on more complicated diradical systems.

■ INTRODUCTION

The tetramethyleneethane (TME) molecule is a disjoint, non-
Kekule ́ diradical that, since its synthesis by Dowd,1 has
remained a challenge for both experimental and theoretical
analysis. Diradical character, which arises when two electrons
occupy two degenerate molecular orbitals, is an important
electronic structure phenomenon. Among the systems and
processes where diradical character plays an important role are
silicon surface reconstruction,2 surface-mediated cycloaddition
reactions,3,4 self-assembly of rotaxanes on titania nanoparticles,5

and reactions in cometary ices.6 TME, as the simplest disjoint
diradical, is an important model system that provides key
insight into the behavior of more complicated diradical systems.
TME consists of two allyl fragments bonded at the central

carbons. It thus has six π orbitals that contain six electrons. The
four methylene CH2 groups are equivalent by symmetry, as are
the two central carbon atoms. As a non-Kekule ́ molecule, TME
cannot be represented by a valence bond structure where the
electrons are delocalized into a network of conjugated double
bonds. Possible TME resonance structures are shown in Figure
1a.
The two frontier orbitals of TME are nearly degenerate and

contain two electrons.7,8 The disjoint nature of these orbitals is
most readily seen in a localized orbital representation, as
illustrated in Figure 1b. Each of the localized orbitals is
nonbonding and is localized on one of the allyl subunits.
Because of the small interaction between the two disjoint
orbitals, the lowest energy singlet and triplet states are expected
to lie very close in energy. The low-lying triplet state is
expected to be reasonably well-described by a single Slater

determinant, while the singlet state requires, at a minimum, two
Slater determinants for its description.7,9

TME originally attracted interest due to the possibility that it
could be used as an organic magnet if the ground electronic
state were a triplet.10 It has been suggested as a building block
for electrically conductive polymers11,12 and has also been used
to generate organoruthenium complexes with unique dianionic
character.13 Its derivatives have been used as photoinduced
electron transfer centers to promote rearrangements in cyclic
ketones.14 TME frequently is used to model the spin states of
more complicated disjoint diradicals.8,15,16 Thus, establishing
the level of theory needed to properly characterize the
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Figure 1. (a) Two possible resonance structures of TME. (b)
Localized nonbonding frontier orbitals.
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electronic states of TME has implications for modeling a large
class of molecules.
One of the major challenges in determining the relative

stability of the lowest energy singlet and triplet states of TME is
that the molecule can rotate about the central C−C bond while
maintaining D2 symmetry as shown in Figure 2. This extra

degree of freedom in the structure raises the possibility that the
singlet and triplet potential energy curves could cross one
another as the torsional angle is varied. Thus, determining the
ordering of these two low-lying states is a difficult theoretical
and experimental challenge.
On the basis of simple molecular orbital (MO) consid-

erations, Longuet-Higgins17 concluded that TME has a triplet
ground state. When Dowd first synthesized TME, he found that
it gave rise to an electron paramagnetic resonance (EPR)
spectrum that indicates a sizable population of the triplet state
under experimental conditions.1 Subsequent experimental work
designed to stabilize the molecule in a matrix also concluded
that the triplet was lower in energy with a torsional angle of
approximately 45°.15,18 On the other hand, photoelectron
spectroscopy of the TME− ion provides strong evidence that
the ground state of TME is the singlet state at the 90° torsional
angle.19 EPR experiments on TME derivatives are also
consistent with these having singlet ground states.20,21

The results of different quantum chemistry calculations on
TME are also contradictory. Calculations using a two-
configurational self-consistent field treatment of the singlet
state and a single configuration for the triplet state predicted
that the singlet and triplet potential curves cross as a function of
the torsional angle.22 However, when the calculations were
extended to configuration interaction with single and double
excitations (CISD) in the valence space, it was found that the
singlet was lower in energy for all values of the torsional
angle.22 In contrast, CISD calculations allowing excitations into
the entire virtual space and again using two references for the
singlet concluded that the triplet state minimum is lower in
energy than the singlet state minimum.23

A complete active space self-consistent field (CASSCF)
calculation with the six π electrons distributed all possible ways
in an active space comprised of the six π orbitals similarly
determined the energy difference between the minima on the
singlet and triplet state potential energy curves favored the
singlet state.24 A difference dedicated configuration interaction
(DDCI) calculation predicted near-degeneracy of the singlet
and triplet states at torsional angles in the range of 40−50°;25 a
similar result was obtained by spin-restricted ensemble-
referenced Kohn−Sham (REKS)26 calculations.
In contrast, multireference coupled cluster calculations

(MRCC) using two reference configurations for the singlet
state and a single reference for the triplet state predicted that
the singlet state is lower in energy than the triplet state;27

however, inclusion of triple excitations in the MRCC
calculations increased the magnitude of the gap by a factor of
2.28 Interestingly, the minimum energy structure of the singlet

state occurred at a twist angle of 30° with the inclusion of triple
excitations and at 90° without triplet excitations. Recently,
Chattopadhyay et al. reported improved virtual orbital
complete active space configuration interaction (IVO-CASCI)
calculations that placed the singlet below the triplet at all
torsional angles and gave the 90° twisted structure as the
minimum of the singlet state.29

The history of experimental and theoretical studies of TME
clearly indicates that the magnitude of the singlet−triplet gap
and the shape of the singlet twisting potential are not well
established. To determine the energies of the lowest singlet and
triplet states of TME as a function of torsional angle and to
reconcile the various experimental and theoretical results, we
apply quantum Monte Carlo (QMC) techniques to this system.
QMC methods explicitly account for electron correlation

effects by numerically integrating the Schrödinger equation. An
antisymmetrized trial wave function is generated from density
functional theory (DFT), Hartree−Fock (HF), or CASSCF
calculations and then multiplied by a Jastrow factor, which
accounts for short-range electron−electron and electron−
nuclear interactions.30 The parameters in the trial function
are optimized using the variational Monte Carlo (VMC)
method.31−33 Although the VMC method can recover much of
the correlation energy at minimal computational cost, it is not
sufficiently accurate for resolving small energy differences.34 As
a result, VMC calculations are generally followed by diffusion
Monte Carlo (DMC) calculations.35 In contrast to VMC, the
DMC method, in principle, is able to solve the Schödinger
equation exactly by stochastic integration. In practice, however,
the fermion sign problem prevents an exact solution.32 The
usual strategy of dealing with the fermion sign problem is to fix
the nodes in the trial wave function in the DMC procedure, a
result of which is that the resulting DMC energy has a small
error due to the fixed nodes.36−38

Despite the status of TME as the simplest disjoint diradical
and as a model system for more complicated disjoint diradicals,
the relative energies of its lowest singlet and triplet states as a
function of the dihedral angle between the allylic subunits is
clearly still an open question. In the present study, we apply
QMC methods to TME and show that many of the earlier
theoretical treatments suffered from an unbalanced treatment
of electron correlation effects in the two low-lying electronic
states as well as from limitations in the atomic basis sets that
were employed.

■ COMPUTATIONAL METHODS
In the present study, the twisting potential energy curves of the singlet
state were first calculated using restricted Hartree−Fock (RHF),39

Møller−Plesset second-order perturbation theory (MP2),40 and
coupled cluster singles and doubles with perturbative triples
(CCSD(T)).41,42 None of these calculations is expected to provide a
good description of the singlet state on account of the static
correlation arising from the near degeneracy of the frontier orbitals.
We include these calculations to illustrate the importance of static as
compared to dynamical correlation effects. The potential energy curves
of the triplet state were calculated using restricted open-shell Hartree−
Fock (ROHF) and MP2 and CCSD(T) methods based on this
reference.43−45 We also compare the singlet and triplet energies as
calculated with Kohn−Sham DFT46 using the Perdew−Burke−
Ernzerhof hybrid functional.47,48 All of these calculations made use
of the cc-pVTZ49 basis set and were performed with the Gaussian 09
program.50

In addition, we have optimized the geometries of the two states as a
function of torsional angle using the CASSCF(6,6) method with
analytical gradients51−53 and the cc-pVTZ basis set. As in previous

Figure 2. The TME molecule and the central torsional angle between
the allylic subunits.
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work, CAS(6,6) denotes a CASSCF calculation with the six π electrons
distributed over the six π orbitals. QMC calculations were carried out
using the CAS(6,6) optimized geometries and using trial functions that
retained the most important determinants in the CASSCF expansions
such that the sum of the squares of the coefficients of the retained
configurations was 0.995. The trial functions for the QMC calculations
were represented in terms of the cc-pV5Z(sp)+2d-CDF54 basis set and
utilized the Trail−Needs norm-conserving Dirac−Fock pseudopoten-
tials.55,56 QMC calculations were performed using the CASINO
package.57

The form of the Jastrow factors given by Drummond et al. was
employed for all QMC calculations.58 The electron−electron (u) and
the electron−nucleus terms (χ) were expanded to eighth order in
interparticle distance. The electron−electron−nucleus term ( f) was
expanded to second order in interparticle distances. To prevent spin
contamination, extra constraints were imposed for the singlet state trial
function. Specifically, the parameters in the u and f terms were
constrained such that the terms for two coalescing spin-up electrons
were the same as for two spin-down electrons. The χ term was
similarly constrained such that the terms for a spin-up electron were
the same as a spin-down. The Jastrow factors in VMC calculations
were optimized for both spin states for each torsional angle
considered. The coefficients in the multideterminant expansions
were also optimized. The coefficients for spin-flipped pairs of
determinants in the expansion for the singlet state were constrained
during optimization to remain equal so that spin contamination was
avoided. The energy minimization method was employed for VMC
optimization.59

During the VMC calculations, 50 000 walkers were propagated for
1 000 000 steps. During the DMC60 calculations, 40 000 walkers were
propagated for 100 000 Monte Carlo steps. The t-move scheme of
Casula61 was used to treat the nonlocal portion of the
pseudopotentials. DMC calculations were performed at time steps of
0.005, 0.0075, and 0.01 au, and the energies at these time steps were
linearly extrapolated to the t = 0 limit. The DMC energies and
statistical errors were extracted using reblocking.62

For comparison to the QMC results, we carried out complete active
space second-order perturbation theory (CASPT2)63,64 calculations as
implemented in the MOLPRO package.65,66 The CASPT2 calculations
were carried out using both CAS(2,2) and CAS(6,6) reference spaces
and each of the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets.49

■ RESULTS

By definition, the electron correlation energy within a given
basis set is the difference between the HF and full configuration
interaction (CI) energies in that basis set. The correlation
energy is commonly broken into static and dynamical
contributions.67 Static correlation derives from near degeneracy
effects, while dynamical correlation is the remaining portion of
the correlation energy. Within the context of the DMC method,
the amount of correlation energy that can be recovered is
limited by the quality of the nodal surface in the fixed-node
approximation. In general, in systems where static correlation
effects are important, a trial function with more than one
configuration is necessary to generate a suitable nodal surface.68

In the following sections, we analyze the role of static and
dynamical correlation in determining the potential energy
curves for the singlet and triplet states of TME.
The Role of Static Correlation in TME. When the

dihedral angle between the allylic subunits is 0°, the TME
molecule is planar and belongs to the D2h point group. At a
dihedral angle of 90°, the molecule has D2d symmetry. At
intermediate angles, the molecule has D2 symmetry. These
three cases are shown in Figure 3. Each of the six carbon atoms
in TME is sp2 hybridized, and, as noted previously, there are six
π electrons.

The π orbitals from an ROHF calculation on the triplet state
of the planar molecule are shown in Figure 4. In the simplest

wave functions for the singlet and triplet states, the 5b2 and 5b3
orbitals are doubly occupied. The next two π orbitals, the 6b1
and 7a frontier orbitals, are nearly degenerate, and in the triplet
state each is singly occupied. At a minimum, the wave function
for the singlet state should include the |...(5b2)

2(5b3)
2(6b1

2)⟩
and |...(5b2)

2(5b3)
2(7a)2⟩ configurations. The 6b2 and 6b3 π

orbitals are not occupied in the simplest wave function for
either state.
As shown in Figure 5, the 6b1 and 7a orbitals cross near 40°.

Figure 6 reports the singlet and triplet twisting potentials of
TME obtained at the HF, MP2, CCSD(T), and PBE0 levels of
theory. The barriers in the singlet potentials shown are due to

Figure 3. The TME molecule at different torsional angles.

Figure 4. π orbitals of TME from ROHF calculations on the 3B1 state
of the planar structure. The red dotted line indicates the carbon
skeleton of the molecule.

Figure 5. The orbital energies of TME as a function of the torsional
angle between the allyl subunits. The orbital energies are calculated for
the triplet state using the cc-pVTZ basis set and the ROHF procedure
as implemented in MOLPRO.
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the change of the HF or Kohn−Sham wave functions from |...
(5b2)

2(5b3)
2(6b1

2)⟩ to |...(5b2)
2(5b3)

2(7a)2⟩ as a result of the
orbital crossing. At the HF level, the singlet is calculated to lie
nearly 2.5 eV higher in energy than the triplet state. The
singlet−triplet gap decreases when correlation effects are
included and falls to approximately 0.35 eV at the CCSD(T)
level for a torsional angle near 40°. However, even the
CCSD(T) method does not properly describe the static
correlation that arises from the near degeneracy of the frontier
orbitals in the singlet state.
As noted above, to describe static correlation effects in the

singlet state, one must adopt, at a minimum, a CAS(2,2) active
space. However, as seen from Figure 7, which compares the

twisting potentials of the singlet and the triplet states calculated
with CAS(2,2) and CAS(6,6) reference spaces, the shape of the
singlet potential undergoes a qualitative change in going from
the CAS(2,2) to the CAS(6,6) space. In particular, the singlet
twisting potential is much flatter when evaluated at the
CAS(6,6) level. This effect is primarily a consequence of the
relatively small energy separation between the 5b3 orbital and

the two frontier orbitals. Hence, the CAS(2,2) space is
inadequate for describing static correlation effects in the singlet
state. For this reason, we use the CAS(6,6) trial functions,
modified as detailed below, for the QMC calculations.

The Role of Dynamical Correlation in TME. As
previously mentioned, the QMC calculations were carried out
retaining the most important determinants in the CAS(6,6)
expansion with a cutoff criterion such that the sum of
determinant coefficients squared is 0.995. As the molecule is
twisted toward 90°, more determinants are required to meet
the cutoff criterion due to the decreasing energy gap between
the 5b2 orbital and the frontier orbitals. At the 90° torsional
angle, 38 determinants are retained in the singlet state and 23 in
the triplet state. Care was taken to not break symmetry by the
truncation.
Table 1 summarizes the results of the VMC calculations on

TME at a torsional angle of 40°. Results are reported without a

Jastrow factor as well as with various terms included in the
Jastrow factor. Although the CAS(6,6) calculations employing
the full CI expansion place the singlet state lower in energy
than the triplet state, with the truncated space the triplet state is
lower in energy. However, the effect of truncation is negligible
for the calculations at the DMC level. In addition, there is a
sizable drop in both the energy and the variance upon inclusion
of the e−e and e−n Jastrow factors, while the inclusion of the
e−e−n term leads to a much smaller drop in energy and
variance. When the CI coefficients are optimized along with the
variables in the Jastrow factor, the VMC energy is further
lowered, and the sign of the singlet−triplet gap changes.
Importantly, the singlet state is stabilized relative to the triplet
by both the introduction of the Jastrow factor and upon CI
coefficient optimization in the VMC step.
The VMC energies of TME as a function of torsional angle

obtained using multideterminant trial functions combined with
three-term Jastrow factors are reported in Figure 8. At both 0°
and 90°, the singlet−triplet ordering is resolved outside of the
error bars on the energies. At these angles, the singlet−triplet
splittings are approximately the same as predicted by the
CASSCF(6,6) calculations. At intermediate angles, however,
the single and triplet VMC energies overlap after taking into
account the large statistical error bars in the calculations. The
singlet state is higher in energy at dihedral angles near 45° than
at 0° and 90°.
Table 2 reports the energy of the singlet state and the

singlet−triplet gap for three sets of DMC calculations. When
using a single determinant as a trial function for both the singlet
and the triplet states, the triplet is calculated to be 1.26 eV more

Figure 6. The singlet−triplet gap of TME as a function of torsional
angle for the HF, PBE0, MP2, and CCSD(T) methods in the cc-pVTZ
basis. In each method, the ground state is predicted to be a triplet state
with the singlet lying higher in energy. The energy of the 3B1 state at
the torsional angle of 0° is taken as the zero of energy.

Figure 7. The CASSCF(2,2) and CASSCF(6,6) twisting curves of
TME calculated using the cc-pVQZ basis set. The energy of the 3B1
state at 0° is taken as the zero of energy.

Table 1. Role of the Jastrow Factor in the VMC Calculations
for the Singlet State of TME at a Dihedral Angle of 40° and
Employing a Truncated CAS(6,6) Trial Function with the
cc-pV5Z(sp)+2d-CDF Basis Seta

trial function energy (eV) variance (eV) S−T gap (eV)

no Jastrow −1023.72 180.1 −0.517
e−e and e−n −1048.88 19.864 −0.313
e−e−n added −1050.05 18.639 −0.250
coeff opt. −1050.68 18.258 0.088

aThe calculations with Jastrow factors used energy minimization. The
energies in the first three rows were obtained without optimization of
the CI coefficients. With added terms, all coefficients were
reoptimized.
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stable than the singlet state. This outcome demonstrates the
inadequacy of the nodal surface of the singlet state as described
by a single Slater determinant. In fact, both the MP2 and the
CCSD(T) methods yield smaller singlet−triplet gaps than the
DMC method when using a trial function with a single
determinant trial function. Interestingly, the singlet−triplet gap
from the DMC calculations with single determinant trial
functions is nearly the same as that obtained from the DFT
calculations, which are known to be inadequate for describing
static correlation effects.69

Table 2 also reports the DMC energies of the singlet state
and the singlet−triplet gap obtained using trial functions
generated from the truncated CAS(6,6) spaces. Unlike wave
function methods based on a CI expansion that adds explicit
correlation to the HF wave function, adding more determinants
to the trial wave function for DMC calculations systematically
improves the nodal surface.68 DMC, under the fixed node
approximation, recovers all of the correlation energy within a
given nodal surface. By adding more determinants to the trial
wave function and optimizing their coefficients, a larger
percentage of correlation energy can be recovered. As Table
2 shows, adding more determinants converges both the energy
and the singlet−triplet gap. Thus, the magnitude of the fixed
node error is minimized, and the energies are converged as a
function of number of determinants included in the expansion.
The twisting potentials at the DMC level using the

multireference trial functions for the singlet and triplet states
are shown in Figure 9. The potentials of both the singlet and
the triplet states obtained from the DMC calculations differ
somewhat from the CAS(6,6) calculations. The most significant
difference is that the twisting potential of the singlet state is
significantly flatter in the DMC than in the CAS(6,6)

calculations, in which the singlet potential has a maximum in
the range of 40°−50°.
As noted previously, the DMC calculations were carried out

at finite time steps, which introduces errors in the energies.
However, as seen in Figure 10, over the whole range of

torsional angles, the singlet−triplet gap is essentially
independent of the time step. Although energies are obtained
by linearly extrapolating the energies at the three time steps to
the τ = 0 limit, it is sufficient to use a single time step at each
torsional angle.
The DMC results presented above motivated us to carry out

CASPT2 calculations of the singlet and triplet twisting
potentials using both CAS(2,2) and CAS(6,6) reference spaces
and employing three different basis sets. CASPT2 is
significantly less computationally demanding than DMC;
however, it is more much more sensitive to the basis set and
active space employed. As seen from Figure 11, the
CAS(6,6)PT2 twisting potentials calculated using the cc-
pVTZ and cc-pVQZ basis sets are quite similar in shape to
the corresponding DMC potentials reported above. However,
for the singlet state, the CAS(6,6)PT2 potential obtained with

Figure 8. Plot of the VMC energies as a function of torsional angle.
The zero of energy is that of the triplet state at 0°. At each angle and
spin state, the coefficients in the Jastrow factor and truncated
CAS(6,6) trial function are optimized. The trial functions are
expressed in the cc-pV5Z(sp)+2d-CDF basis.

Table 2. DMC Energies (τ = 0.005 au) for the Singlet State
and Singlet−Triplet Gaps of TME at Torsional Angle of
40°a

trial function energy (eV) S−T gap (eV)

HF −1051.247(5) −1.264(3)
CAS(2,2) −1052.504(1) −0.004(1)
truncated CAS(6,6) −1052.857(5) 0.042(6)

aThe coefficients in the truncated CAS(6,6) trial functions and the
Jastrow factors have been optimized for each calculation. The cc-
pV5Z(sp)+2d-CDF basis set was employed for all calculations.

Figure 9. Torsional potential energy curves for the singlet and triplet
states of TME obtained from DMC calculations with a multi-
determinant trial function as well as from CAS(6,6) calculations with
the cc-pV5Z(sp)+2d-CDF basis set. DMC energies are calculated at a
time step of τ = 0.005 au. The trial functions for the DMC calculations
were taken from a truncation of the CAS(6,6) expansion. The zero of
energy is the triplet state at 0° for each method.

Figure 10. The singlet−triplet gap of TME as a function of torsional
angle for DMC calculations at three different time steps and linearly
extrapolated to the τ = 0 limit. The gaps calculated at the various time
steps agree to within the error bars. At each angle and spin state, the
coefficients in the Jastrow factor and truncated CAS(6,6) trial function
are optimized. The trial functions are expressed in the cc-pV5Z-
(sp)+2d-CDF basis.
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the cc-pVDZ basis set is qualitatively different from those
obtained with the two larger basis sets.
To determine whether the sensitivity to the basis set is due to

the high angular momentum functions, we also carried out
CAS(6,6)PT2 calculations with the cc-pVTZ′ basis set, which
omits from the standard cc-pVTZ basis set the f functions on
the C atoms and the d functions on the H atoms. The twisting
potential for the singlet state obtained with the cc-pVTZ′ basis
set is similar in shape to that obtained using the cc-pVDZ basis
set. CAS(6,6)PT2 calculations were also performed with the cc-
pVTZ basis set modified by omitting only the d functions on
the H atoms while retaining the f functions on the C atoms.
This basis set resulted in a twisting potential for the singlet state
that is nearly identical to that obtained using the full cc-pVTZ
basis set; this result establishes that the inclusion of the f basis
functions on the C atoms is essential for accurately describing
the singlet state twisting potential of TME with traditional wave
function methods.
It is also seen from Figure 11 that the CAS(2,2)PT2

procedure gives a twisting potential for the singlet state that is
qualitatively different from that obtained using the CAS(6,6)-
PT2 procedure. This effect is a consequence of the importance
in the CAS(6,6) wave function of configurations involving
excitations out of the 5b2 and 5b3 orbitals. Thus, a two-
configurational reference is insufficient for CASPT2 calcu-
lations on the singlet state of TME. In contrast, the
CAS(6,6)PT2 method, when used with either a cc-pVTZ or
a cc-pVQZ basis set, gives singlet and triplet potentials that are
in close agreement with the DMC results.
Under conditions where the (Ĥ(0)−E(0)) term in the

perturbative expansion becomes singular, the CASPT2 wave
function does not converge. In these cases, level shift methods
are required to remove the singularity.70 Although we do not
observe this problem, we have tested level shifts of 0.05, 0.1,
0.2, and 0.3 au and found a negligible effect on the singlet−
triplet gap of the converged CAS(6,6)PT2/cc-pVQZ calcu-
lations.
Pittner et al.27 and Bhaskaran-Nair et al.28 carried out two-

reference MRCC calculations on the lowest-lying singlet state
of TME. When including only single and double excitations in
the MRCC expansion (MRCCSD), the maximum in the singlet
state twisting potential of TME occurred at a dihedral angle of
0°.27 Two-reference MRCC calculations with iterative triples
(MRCCSD(T)) give a shallow minimum in the potential
energy curve of the singlet state at a dihedral angle of 30°.28

However, these calculations used the cc-pVTZ′ basis set that
excludes f functions on the carbon atom. We have

demonstrated that the inclusion of the carbon f functions and
using a reference space with more than two configurations are
both important for properly characterizing the singlet state of
TME. Table 3 summarizes the results for TME obtained from
various CASPT2 and MRCC calculations as well as from the
DMC calculations of the present study.

■ DISCUSSION
Our DMC and CASPT2 calculations on TME indicate that
electron correlation effects beyond those recovered at the
CAS(6,6) level are more important for the singlet state at the
torsional angle of 0° than at 45°. Interestingly, the REKS
approach,26 which accounts for static correlation in a CAS-like
manner and dynamical correlation in a DFT-like manner, gives
for the singlet state a twisting potential of qualitatively the same
shape as those obtained by VMC, DMC, and CAS(6,6)PT2
calculations.
Our CAS(6,6)PT2 calculations demonstrate that a basis set

at least as large as cc-pVTZ is required to properly describe the
shape of the twisting potential of the singlet state of TME when
using wave function-based methods. Although Pittner et al.27

and Bhaskaran-Nair et al.28 used two-reference coupled cluster
methods to describe correlation effects, the basis set used in
their studies did not contain f functions on the C atoms. Both
the omission of the f functions and the restriction of the
reference space to two configurations leads to errors in the
shape of the calculated potential for the singlet state of TME.
Bhaskaran-Nair et al. reported singlet−triplet gaps for TME

that range from −0.14 to 0.67 eV, depending upon the
approximations used in the coupled-cluster expansion. This
range of results illustrates the challenge of balancing the
correlation effects in the singlet and triplet states of TME when
using such methods. The DMC method is more successful in
providing a balanced treatment of the electron correlation
effects in the two states. As long as the trial function employed
provides a suitable description of the nodal surface, the DMC
method essentially recovers all of the electron correlation in the
problem. Thus, the problems introduced by truncating the
configuration space are avoided. Moreover, the energies
obtained by DMC calculations are relatively insensitive to the
choice of the basis set used to represent the trial function than
are traditional wave function approaches.
As related to previous experimental work, our DMC

calculations indicate that TME in the singlet state has a very
small barrier to rotation about the central C−C bond and that,
at intermediate twist angles, the vertical singlet−triplet gap is
only about 0.02 eV. This small gap is consistent with EPR

Figure 11. The singlet and triplet curves of TME as calculated by the
CASPT2 method for different basis sets.

Table 3. Minima and Maxima of the Torsional Potential of
the Singlet State of TME As Calculated with Different
Methods

method basis set minima maxima

CAS(2,2)PT2 cc-pVQZ 30° 0° and 90°
CAS(6,6)PT2 cc-pVDZ 90° 0°
CAS(6,6)PT2 cc-pVQZ 0° and 90° 45°
MRCCSD27 cc-pVTZ′a 90° 0°
MRCCSD(T)28 cc-pVTZ′a 30° 0° and 90°
CAS(6,6)PT2 cc-pVTZ′a 90° 0°
DMC cc-pV5Z(sp)+2d-CDF 0° and 90°b 40°−50°

aNo d functions on H atoms and no f functions on C atoms. bEnergies
at twist angles of 0° and 90° agree within statistical error.
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spectra1 that detected the triplet state of TME. The singlet is
not EPR active, so the weak triplet signal was originally
interpreted as evidence of a triplet ground state.
Negative ion photoelectron spectroscopy measurements

provided evidence that the singlet is lower in energy than the
triplet. The ground state of the anion of TME is a 2B1 state with
its potential energy minimum at a torsional angle of 90°. Two
low-lying electronic states of neutral TME were observed in the
photoelectron spectrum. These states were assigned as the 3B1

and 1A states with the 1A state lying lower in energy. The
singlet−triplet gap was measured to be 0.13 ± 0.013 eV
between the 3B1 and

1A states at the 90° torsional angle. This
result is in good agreement with our DMC (τ = 0.005 au)
singlet−triplet gap of 0.10 ± 0.014 eV and our CASPT2
calculated singlet−triplet gap of 0.13 eV at a torsional angle of
90°.
Clifford et al.19 estimated that, due to poor Franck−Condon

overlap between the anion with the 90° torsional angle and the
neutral triplet with the 45° torsional angle, the observed 0.13
eV gap is overestimated by approximately 0.04 eV. Our DMC
and CASPT2 calculations, however, put the barrier to rotation
for the triplet state at 0.07 eV, which suggests that the true
singlet−triplet gap based on the energies of the two minima
could be as small as 0.06 eV. Our calculations predict the
separation between the minimum on the singlet potential and
the minimum on the triplet potential to be 0.07 eV from
CASPT2 and 0.04 eV from DMC. These results are consistent
with the experimentally measured gap when corrected with the
calculated barrier height of the triplet potential.

■ CONCLUSIONS

We have used the quantum Monte Carlo and CASPT2
approaches to calculate the torsional potentials of the lowest
singlet and triplet states of TME. Multideterminant trial
function were used to perform the DMC calculations, which
give a torsional potential energy curve for the singlet state that
is qualitatively different from that obtained in prior studies
using traditional wave function methods. The CASPT2 method
when performed with a sufficiently large active space and a
sufficiently flexible basis set gives singlet and triplet potential
energy curves with shapes and energy separations similar to
those obtained from the DMC calculations. Our results
conclusively demonstrate that the ground state of TME is a
singlet and that the maximum in the torsional potential of the
singlet state occurs at an angle of 45°, which is where the triplet
state has its minimum.
The small singlet−triplet gap calculated at intermediate twist

angles suggests the original EPR results were due to weak
thermal population of the triplet state. Our results also are
consistent with the results of negative ion photoelectron
spectroscopy that measured the singlet−triplet gap at the 90°
torsional angle. We also have demonstrated that previous
theoretical studies were performed with insufficiently flexible
atomic basis sets and, in most cases, also an inadequate
treatment of static correlation effects in the singlet state. In
addition, our calculations validate the use of CASPT2 for
disjoint diradicals when used with flexible basis sets and a large
active space.
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